Copied to
clipboard

?

G = C4226D14order 448 = 26·7

26th semidirect product of C42 and D14 acting via D14/C7=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C4226D14, C14.762+ (1+4), (C4×D7)⋊5D4, C41D45D7, C4.34(D4×D7), (C2×D4)⋊12D14, C28.65(C2×D4), C28⋊D426C2, (C4×C28)⋊26C22, D14.47(C2×D4), C23⋊D1426C2, D14⋊C434C22, C4.D2825C2, (D4×C14)⋊32C22, C42⋊D723C2, Dic7.52(C2×D4), C14.93(C22×D4), Dic7⋊D436C2, C28.17D426C2, (C2×C28).635C23, (C2×C14).259C24, Dic7⋊C471C22, C75(C22.29C24), (C4×Dic7)⋊39C22, C23.D736C22, C2.80(D46D14), C23.65(C22×D7), (C2×Dic14)⋊34C22, (C2×D28).170C22, (C22×C14).73C23, (C23×D7).72C22, C22.280(C23×D7), (C2×Dic7).134C23, (C22×Dic7)⋊29C22, (C22×D7).227C23, (C2×D4×D7)⋊19C2, C2.66(C2×D4×D7), (C7×C41D4)⋊6C2, (C2×D42D7)⋊20C2, (C2×C7⋊D4)⋊26C22, (C2×C4×D7).138C22, (C2×C4).213(C22×D7), SmallGroup(448,1168)

Series: Derived Chief Lower central Upper central

C1C2×C14 — C4226D14
C1C7C14C2×C14C22×D7C23×D7C2×D4×D7 — C4226D14
C7C2×C14 — C4226D14

Subgroups: 1900 in 334 conjugacy classes, 103 normal (29 characteristic)
C1, C2, C2 [×2], C2 [×8], C4 [×2], C4 [×8], C22, C22 [×30], C7, C2×C4, C2×C4 [×2], C2×C4 [×13], D4 [×22], Q8 [×2], C23 [×4], C23 [×11], D7 [×4], C14, C14 [×2], C14 [×4], C42, C42, C22⋊C4 [×10], C4⋊C4 [×2], C22×C4 [×3], C2×D4 [×2], C2×D4 [×4], C2×D4 [×13], C2×Q8, C4○D4 [×4], C24 [×2], Dic7 [×2], Dic7 [×4], C28 [×2], C28 [×2], D14 [×2], D14 [×16], C2×C14, C2×C14 [×12], C42⋊C2, C22≀C2 [×4], C4⋊D4 [×4], C4.4D4 [×2], C41D4, C41D4, C22×D4, C2×C4○D4, Dic14 [×2], C4×D7 [×4], D28 [×2], C2×Dic7, C2×Dic7 [×4], C2×Dic7 [×4], C7⋊D4 [×12], C2×C28, C2×C28 [×2], C7×D4 [×8], C22×D7, C22×D7 [×2], C22×D7 [×8], C22×C14 [×4], C22.29C24, C4×Dic7, Dic7⋊C4 [×2], D14⋊C4 [×6], C23.D7 [×4], C4×C28, C2×Dic14, C2×C4×D7, C2×D28, D4×D7 [×4], D42D7 [×4], C22×Dic7 [×2], C2×C7⋊D4 [×8], D4×C14 [×2], D4×C14 [×4], C23×D7 [×2], C42⋊D7, C4.D28, C28.17D4, C23⋊D14 [×4], Dic7⋊D4 [×4], C28⋊D4, C7×C41D4, C2×D4×D7, C2×D42D7, C4226D14

Quotients:
C1, C2 [×15], C22 [×35], D4 [×4], C23 [×15], D7, C2×D4 [×6], C24, D14 [×7], C22×D4, 2+ (1+4) [×2], C22×D7 [×7], C22.29C24, D4×D7 [×2], C23×D7, C2×D4×D7, D46D14 [×2], C4226D14

Generators and relations
 G = < a,b,c,d | a4=b4=c14=d2=1, ab=ba, cac-1=dad=a-1, cbc-1=b-1, dbd=a2b-1, dcd=c-1 >

Smallest permutation representation
On 112 points
Generators in S112
(1 42 19 35)(2 36 20 29)(3 30 21 37)(4 38 15 31)(5 32 16 39)(6 40 17 33)(7 34 18 41)(8 103 23 110)(9 111 24 104)(10 105 25 112)(11 99 26 106)(12 107 27 100)(13 101 28 108)(14 109 22 102)(43 79 91 61)(44 62 92 80)(45 81 93 63)(46 64 94 82)(47 83 95 65)(48 66 96 84)(49 71 97 67)(50 68 98 72)(51 73 85 69)(52 70 86 74)(53 75 87 57)(54 58 88 76)(55 77 89 59)(56 60 90 78)
(1 58 12 65)(2 66 13 59)(3 60 14 67)(4 68 8 61)(5 62 9 69)(6 70 10 63)(7 64 11 57)(15 72 23 79)(16 80 24 73)(17 74 25 81)(18 82 26 75)(19 76 27 83)(20 84 28 77)(21 78 22 71)(29 48 108 89)(30 90 109 49)(31 50 110 91)(32 92 111 51)(33 52 112 93)(34 94 99 53)(35 54 100 95)(36 96 101 55)(37 56 102 97)(38 98 103 43)(39 44 104 85)(40 86 105 45)(41 46 106 87)(42 88 107 47)
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)(15 16 17 18 19 20 21)(22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42)(43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98)(99 100 101 102 103 104 105 106 107 108 109 110 111 112)
(1 11)(2 10)(3 9)(4 8)(5 14)(6 13)(7 12)(15 23)(16 22)(17 28)(18 27)(19 26)(20 25)(21 24)(29 105)(30 104)(31 103)(32 102)(33 101)(34 100)(35 99)(36 112)(37 111)(38 110)(39 109)(40 108)(41 107)(42 106)(44 56)(45 55)(46 54)(47 53)(48 52)(49 51)(57 83)(58 82)(59 81)(60 80)(61 79)(62 78)(63 77)(64 76)(65 75)(66 74)(67 73)(68 72)(69 71)(70 84)(85 97)(86 96)(87 95)(88 94)(89 93)(90 92)

G:=sub<Sym(112)| (1,42,19,35)(2,36,20,29)(3,30,21,37)(4,38,15,31)(5,32,16,39)(6,40,17,33)(7,34,18,41)(8,103,23,110)(9,111,24,104)(10,105,25,112)(11,99,26,106)(12,107,27,100)(13,101,28,108)(14,109,22,102)(43,79,91,61)(44,62,92,80)(45,81,93,63)(46,64,94,82)(47,83,95,65)(48,66,96,84)(49,71,97,67)(50,68,98,72)(51,73,85,69)(52,70,86,74)(53,75,87,57)(54,58,88,76)(55,77,89,59)(56,60,90,78), (1,58,12,65)(2,66,13,59)(3,60,14,67)(4,68,8,61)(5,62,9,69)(6,70,10,63)(7,64,11,57)(15,72,23,79)(16,80,24,73)(17,74,25,81)(18,82,26,75)(19,76,27,83)(20,84,28,77)(21,78,22,71)(29,48,108,89)(30,90,109,49)(31,50,110,91)(32,92,111,51)(33,52,112,93)(34,94,99,53)(35,54,100,95)(36,96,101,55)(37,56,102,97)(38,98,103,43)(39,44,104,85)(40,86,105,45)(41,46,106,87)(42,88,107,47), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98)(99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,11)(2,10)(3,9)(4,8)(5,14)(6,13)(7,12)(15,23)(16,22)(17,28)(18,27)(19,26)(20,25)(21,24)(29,105)(30,104)(31,103)(32,102)(33,101)(34,100)(35,99)(36,112)(37,111)(38,110)(39,109)(40,108)(41,107)(42,106)(44,56)(45,55)(46,54)(47,53)(48,52)(49,51)(57,83)(58,82)(59,81)(60,80)(61,79)(62,78)(63,77)(64,76)(65,75)(66,74)(67,73)(68,72)(69,71)(70,84)(85,97)(86,96)(87,95)(88,94)(89,93)(90,92)>;

G:=Group( (1,42,19,35)(2,36,20,29)(3,30,21,37)(4,38,15,31)(5,32,16,39)(6,40,17,33)(7,34,18,41)(8,103,23,110)(9,111,24,104)(10,105,25,112)(11,99,26,106)(12,107,27,100)(13,101,28,108)(14,109,22,102)(43,79,91,61)(44,62,92,80)(45,81,93,63)(46,64,94,82)(47,83,95,65)(48,66,96,84)(49,71,97,67)(50,68,98,72)(51,73,85,69)(52,70,86,74)(53,75,87,57)(54,58,88,76)(55,77,89,59)(56,60,90,78), (1,58,12,65)(2,66,13,59)(3,60,14,67)(4,68,8,61)(5,62,9,69)(6,70,10,63)(7,64,11,57)(15,72,23,79)(16,80,24,73)(17,74,25,81)(18,82,26,75)(19,76,27,83)(20,84,28,77)(21,78,22,71)(29,48,108,89)(30,90,109,49)(31,50,110,91)(32,92,111,51)(33,52,112,93)(34,94,99,53)(35,54,100,95)(36,96,101,55)(37,56,102,97)(38,98,103,43)(39,44,104,85)(40,86,105,45)(41,46,106,87)(42,88,107,47), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98)(99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,11)(2,10)(3,9)(4,8)(5,14)(6,13)(7,12)(15,23)(16,22)(17,28)(18,27)(19,26)(20,25)(21,24)(29,105)(30,104)(31,103)(32,102)(33,101)(34,100)(35,99)(36,112)(37,111)(38,110)(39,109)(40,108)(41,107)(42,106)(44,56)(45,55)(46,54)(47,53)(48,52)(49,51)(57,83)(58,82)(59,81)(60,80)(61,79)(62,78)(63,77)(64,76)(65,75)(66,74)(67,73)(68,72)(69,71)(70,84)(85,97)(86,96)(87,95)(88,94)(89,93)(90,92) );

G=PermutationGroup([(1,42,19,35),(2,36,20,29),(3,30,21,37),(4,38,15,31),(5,32,16,39),(6,40,17,33),(7,34,18,41),(8,103,23,110),(9,111,24,104),(10,105,25,112),(11,99,26,106),(12,107,27,100),(13,101,28,108),(14,109,22,102),(43,79,91,61),(44,62,92,80),(45,81,93,63),(46,64,94,82),(47,83,95,65),(48,66,96,84),(49,71,97,67),(50,68,98,72),(51,73,85,69),(52,70,86,74),(53,75,87,57),(54,58,88,76),(55,77,89,59),(56,60,90,78)], [(1,58,12,65),(2,66,13,59),(3,60,14,67),(4,68,8,61),(5,62,9,69),(6,70,10,63),(7,64,11,57),(15,72,23,79),(16,80,24,73),(17,74,25,81),(18,82,26,75),(19,76,27,83),(20,84,28,77),(21,78,22,71),(29,48,108,89),(30,90,109,49),(31,50,110,91),(32,92,111,51),(33,52,112,93),(34,94,99,53),(35,54,100,95),(36,96,101,55),(37,56,102,97),(38,98,103,43),(39,44,104,85),(40,86,105,45),(41,46,106,87),(42,88,107,47)], [(1,2,3,4,5,6,7),(8,9,10,11,12,13,14),(15,16,17,18,19,20,21),(22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42),(43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98),(99,100,101,102,103,104,105,106,107,108,109,110,111,112)], [(1,11),(2,10),(3,9),(4,8),(5,14),(6,13),(7,12),(15,23),(16,22),(17,28),(18,27),(19,26),(20,25),(21,24),(29,105),(30,104),(31,103),(32,102),(33,101),(34,100),(35,99),(36,112),(37,111),(38,110),(39,109),(40,108),(41,107),(42,106),(44,56),(45,55),(46,54),(47,53),(48,52),(49,51),(57,83),(58,82),(59,81),(60,80),(61,79),(62,78),(63,77),(64,76),(65,75),(66,74),(67,73),(68,72),(69,71),(70,84),(85,97),(86,96),(87,95),(88,94),(89,93),(90,92)])

Matrix representation G ⊆ GL6(𝔽29)

2800000
0280000
0000112
00002718
00182700
0021100
,
120000
28280000
000010
000001
0028000
0002800
,
100000
28280000
00252500
0041100
000044
00002518
,
100000
28280000
004400
00182500
000044
00001825

G:=sub<GL(6,GF(29))| [28,0,0,0,0,0,0,28,0,0,0,0,0,0,0,0,18,2,0,0,0,0,27,11,0,0,11,27,0,0,0,0,2,18,0,0],[1,28,0,0,0,0,2,28,0,0,0,0,0,0,0,0,28,0,0,0,0,0,0,28,0,0,1,0,0,0,0,0,0,1,0,0],[1,28,0,0,0,0,0,28,0,0,0,0,0,0,25,4,0,0,0,0,25,11,0,0,0,0,0,0,4,25,0,0,0,0,4,18],[1,28,0,0,0,0,0,28,0,0,0,0,0,0,4,18,0,0,0,0,4,25,0,0,0,0,0,0,4,18,0,0,0,0,4,25] >;

64 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I2J2K4A4B4C4D4E4F4G4H4I4J7A7B7C14A···14I14J···14U28A···28R
order122222222222444444444477714···1414···1428···28
size111144441414282822441414282828282222···28···84···4

64 irreducible representations

dim11111111112222444
type++++++++++++++++
imageC1C2C2C2C2C2C2C2C2C2D4D7D14D142+ (1+4)D4×D7D46D14
kernelC4226D14C42⋊D7C4.D28C28.17D4C23⋊D14Dic7⋊D4C28⋊D4C7×C41D4C2×D4×D7C2×D42D7C4×D7C41D4C42C2×D4C14C4C2
# reps1111441111433182612

In GAP, Magma, Sage, TeX

C_4^2\rtimes_{26}D_{14}
% in TeX

G:=Group("C4^2:26D14");
// GroupNames label

G:=SmallGroup(448,1168);
// by ID

G=gap.SmallGroup(448,1168);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,219,675,570,297,136,18822]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=c^14=d^2=1,a*b=b*a,c*a*c^-1=d*a*d=a^-1,c*b*c^-1=b^-1,d*b*d=a^2*b^-1,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽